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ABSTRACT 

Modeling the shape of the scalp and face is essential for the design of protective helmets and 
other head-borne equipment. However, head anthropometry studies using optical scanning 
rarely capture scalp shape because of hair interference. Data on scalp shape is available from 
bald men, but female data are generally not available. To address this issue, scalp shape was 
digitized in an ethnically diverse sample of 100 adult women, age 18-59, under a protocol that 
included whole head surface scanning and scalp measurement using a three-dimensional (3D) 
coordinate digitizer. A combined male and female sample was created by adding 3D surface 
scans of a similarly diverse sample of 80 bald men. A statistical head shape model was created 
by standardizing the head scan data. A total of 58 anatomical head landmarks and 12 head 
dimensions were obtained from each scan and processed along with the scans. A parametric 
model accounting for the variability of the head shape under the hair as a function of selected 
head dimensions was developed. The full-variable model has a mean shape error of 3.8 mm; 
the 95th percentile error was 7.4 mm, which were measured at the vertices. The model will be 
particularly useful for generating a series of representing a target population as well as for 
generating subject-specific head shapes along with predicted landmarks and dimensions. The 
model is publicly available online at http://humanshape.org/head/. 
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INTRODUCTION 

Three-dimensional (3D) surface scanning technology enables rapid capture of the 3D 
morphology of an individual’s head. Digital head shape models based on head geometry and 
anthropometry have been used to develop and test products such as helmets (Corner et al. 
1997, Liu et al. 2008, Willinger et al. 2002, Friess and Bradtmiller, 2003), Eyeware (Kouchi et al. 
2004), mask (Gotoa et al. 2015), and headsets (Lacko et al. 2017). Statistical analysis methods 
have been employed in these studies to characterize head shape variation and to identify 
similarities and differences within a large sample 3D anthropometric data. For example, 
principal component analysis (PCA) provides an efficient way to represent a large dataset of 
high-resolution head and face scan data with an optimized model (Lacko et al. 2017, Gotoa et 
al. 2015, Zhuang et al. 2013, Friess and Bradtmiller, 2003). PCA models have typically been 
used for the quantitative identification of the head shape variance for a target population to 
facilitate product design. 

One major limitation of 3D contactless scanning techniques for obtaining head shape, such as 
laser scanning, is they rarely capture the scalp surface because the imaging system does not 
penetrate through hair. Most head shape studies use an elastic cap that compresses hair, but 
this does not entirely remove the effects of hair on the head surface shape. Some studies have 
used CT or MRI image databases to resolve this issue (Lacko et al. 2015; Yang et al. 2014; Li et 
al. 2015; Danckaers et al. 2017). However, only a small number of CT/MRI databases are 
publicly available from narrow populations (Shah and Luximon 2018). Most importantly, medical 
imaging rarely captures the entire head and face in the same scan due to concerns about 
scanning speed and radiation exposure.  

This paper presents a parametric head shape model based on a statistical analysis of a large 
sample of adult head scans that are not contaminated with hair artifacts. These high-resolution 
head scans of a total of 180 female and male adults were standardized using a template-based 
fitting method.  A PCA and a multivariate regression analysis were conducted using the head 
geometry along with 58 anatomical landmarks, 12 anthropometric dimensions, and subject 
demographic data. The main contributions of the work are: 

● A statistical head shape model based on a large male bald head scan dataset and a 
large dataset of female 3D head scans with scalp surface data obtained using a FARO 
arm, 

● regression models representing scalp and face shape given anthropometric dimensions 
were built using different variable sets, and 

● We present a spatial error metric in head shape prediction produced from both PCA and 
regression models that accounts for the geometric discrepancy between predictions and 
actual shapes.  

 

 



 

 

METHODS 

Data Source 
A total of 180 adult bald 3D head scans (100 female and 80 male) subjects with the ethnic 
diversity of 18 and 59 years old were used for the current analysis. Each scan has about 50K - 
100K vertices to describe the 3D scalp shape as well as the face, ears, and neck. Male scalp 
shapes were obtained from laser-scan studies that included bald men (Gordon et al. 2013, 
Gordon et al. 2014, unpublished US Army data). The female scalp shapes were obtained under 
the Air Force IRB approved protocol FWR20060075H using a novel manual digitization method 
shown in Figure 1 (Mullenger & Hudson 2015). The Artec Eva Scanner (http://artec3d.com) was 
used to collect initial head scans of subjects, and a FARO Arm coordinate digitizer (Faro 
Technologies Inc. http://www.faro.com/) was used to record streams of 3D data points on the 
scalp while the subject’s head rested in a stabilizing fixture to limit head movement (Figure 1 
(a)). The scalp points were probed through four to five hair parts on each side of the midsagittal 
plane for a total of ~200 data points. The scalp point data were interpolated as a surface using 
the thin plate spline technique. The scalp surface was aligned with the 3D scan of the head and 
face based on the four digitized landmark points (right and left Tragion, Pronasale, and Sellion) 
and combined to obtain a full head surface. Standard anthropometric values commonly 
available from both the male and female data sources are head circumference, head length, 
head breadth, and tragion to top-of-head. Table 1 shows the summary statistics of the data 
source, and Table 2 shows the subject’s ethnicity distribution. 

 
Fifty-eight anatomical head landmarks (Figure 2 and Appendix A) were manually digitized from 
each scan using MeshLab software (http://meshlab.net). These landmarks are essential for the 
alignment of the scans to have the same coordinate system and for standardization of the mesh 
structure to ensure anatomical homology across the scan data, which is critical for statistical 
analysis. Each landmark was carefully digitized based on rigorous definitions referencing 
relevant literature (Appendix A), and multiple measurers cross-checked landmark consistency 
across the scans.  
 

 
Figure 1. The overall process of female head data acquisition: (a) Obtain a head scan with a 
portable surface scanner, record four face and calvarium pre-marked anatomical landmarks 
using a 3D coordinate digitizer as alignment references, then capture scalp surface along five 
hair parts and along the hairline, (b) generate a scalp surface using a thin plate spline surface 
warping technique and the eight landmarks to align surface scan and coordinate data, (c) clean 
and merge scans, and (d) smooth local surface to remove artifacts (Mullenger & Hudson 2015). 



 

 

 
Table 1. Head anthropometry descriptive statistics (n=180) 

    Mean SD Min Max 5th 95th 

Male 

Head Breadth (mm) 155.1 5.4 143.0 175.0 145.5 165.0 

Head Circ. (mm) 575.0 15.2 545.0 615.0 553.0 604.5 

Head Length (mm) 200.5 6.6 187.0 224.0 190.5 212.5 

Breadth-to-Length 0.77 0.03 0.71 0.84 0.72 0.84 

Age (YO) 35.6 9.3 19.0 56.0 22.0 52.5 

Female 

Head Breadth (mm) 146.6 5.8 134.0 165.0 137.0 156.8 

Head Circ. (mm) 556.8 19.3 509.0 610.0 522.6 590.0 

Head Length (mm) 186.5 8.8 152.0 202.0 172.0 200.0 

Breadth-to-Length 0.79 0.04 0.70 0.96 0.72 0.86 

Age (YO) 27.7 10.2 18.0 59.0 19.0 50.8 

 
 
Table 2. Ethnicity/race of the subjects 

Ethnicity/Race Male Female Total 

Asian/Pacific Islander 2 14 16 (8.9%) 

Black/African American 32 13 45 (25%) 

White/Caucasian 33 65 98 (54.4%) 

Hispanic 3 4 7 (3.9%) 

Others 10 4 14 (7.8%) 
 
 
All the scans were aligned to a coordinate system that originated at the mid-tragion (Figure 2). 
The coordinate system was defined at the Frankfurt plane, which is a horizontal plane passing 
through left and right tragion and right infraorbitale landmarks, given by: 
 

● Origin: Midtragion (Mid-point between right and left tragions) 
● Y(Medial-Lateral): Right tragion to left tragion 
● Z(Caudal-cephalad): Vertical; obtained as the cross product of the Y axis and the vector 

from left tragion to left infraorbitale  
● X(Anterior-Posterior): cross product of the Y and Z axes. 

 
 

 
 



 

 

 
Figure 2. 58 head and face landmarks (red points) on the mean head shape and the global 

coordinate system originating at the mid-tragion point 
 
There were four traditional anthropometric dimensions, including head length, breadth, 
circumference, and Tragion to top-of-head, commonly available from both the female and male 
datasets. All these dimensions were manually measured using the same anthropometric 
protocol presented in the 2012 U.S. Army Anthropometric Survey (ANSUR II) (Gordon et al. 
2014). The definitions of these dimensions are listed in Appendix B 
  
Along with the four manually measured traditional anthropometric dimensions, seven additional 
dimensions were computed from the scans. An automatic dimension computation algorithm 
based on landmark locations was developed based on ANSUR II and applied to measure the 
seven dimensions. For example, Head Arc Length was estimated from the intersecting curve 
between the scan and a plane passing through Glabella, Occiput, and Top of Head points. All 
the definitions of these digital dimensions are listed in Appendix B. Table 3 lists the 
demographic information collected from subjects and traditional head anthropometry measured 
using manual techniques as well as the digital head dimensions estimated from the scans.  
 
Table 3. Subject demographics, manually measured head anthropometry, and digital head 
dimensions estimated from 3D scans. 

Standard Manual Head Anthropometry 
and Demographic Data 

Head Anthropometry Estimated 
from Scans 

Head Length Bitragion Chin Arc 

Head Breadth Bitragion Submandibular Arc 

Head Circumference Bitragion width 

Length-Breadth Ratio Head Arc Length 



 

 

Tragion to top-of-head Face Width 

Sex Ear Height 

Age Arc Width 

Ethnicity/Race  

 
 
Template-based Standardization 
Standardizing the polygonal structure (mesh) of the scans is essential prior to a statistical 
analysis of the morphologic variance across the head scans. We standardized the head meshes 
by fitting a template mesh to all the scans using a two-level fitting method (Park and Reed 2015, 
Park et al. 2017). Briefly, this method first morphs a template model based on the landmarks of 
the target scan using a radial basis function (RBF) technique. The initial morphing step ensures 
specific template vertices are located at corresponding landmark locations across all target 
scans. In a second step, an implicit surface fitting technique fits the morphed template to a 
target scan and captures geometric detail. The template head shape model has a symmetric 
mesh structure with 5487 vertices (Figure 3b).  
  
We also applied two additional refinement processes -- imposing right-left symmetry and ear 
shape reconstruction -- to improve final model usability. The template-fit meshes were made 
right-left symmetric by averaging right-left paired coordinate vertices. The landmark data were 
also repositioned to be right-left symmetrical using an RBF technique that accounted for vertex 
movements. Finally, ear geometry was refined to eliminate scanning artifacts due to the inherent 
geometrical complexity. We morphed the ear parts extracted from the template model to each 
scan based on manually digitized ear landmark data.  
 

 
Figure 3. Template fitting process: (a) target scan, (b) template model with landmarks, (c) initial 
template morph based on landmarks, (d) fine-fitted model, and (e) final symmetric fit 
 
Statistical Head Shape Model 
The processed mesh data were statistically analyzed using principal component (PC) and 
regression analyses (Park and Reed 2015). First, the 12 anthropometric head dimensions, three 
demographic data, the coordinates of the 58 measured landmarks, and the 5487 model vertices 
for each fit were merged as a one-dimensional geometric vector. Next, the vectors were run 
through a PC analysis. The geometric vectors were then projected to the PC space yielding PC 



 

 

coordinates (scores) for each subject. Finally, a multivariate regression model was built using 
standard ordinary least squares methods to associate the projected PC scores with 
anthropometric predictors, e.g., head length, breadth, and circumference. The regression allows 
the head shape model to be intuitively manipulated with standard head dimensions. 
 

RESULTS 

The effect of the number of PCs used for reconstruction was examined to determine a number 
that yields an acceptable error. Our error metric was defined as the Euclidean distances from 
the vertices of a head model reconstructed with a given number of the PC scores to the 
corresponding nodes of the original template-fit head. Figure 4 shows the quantiles of the 
unsigned errors as the number of PCs varied from 170 to 10. The median mean errors (Figure 
4a) were 1.2 mm for all subjects with 50 PCs and 0.5 mm with 100 PCs. The median 95th 
percentile errors (Figure 4b) are 2.4 mm and 1.2 mm, respectively. Based on this examination of 
error, the first 100 PCs, yielding a median 95th-percentile error of 1.2 mm, were used to create 
the parametric head model. Figure 5 shows head shape variations of the first four principal 
components at plus and minus three standard deviations. 

  

   (a)               (b) 

Figure 4. Effects of the number of retained PCs on quantiles (across subjects) of (a) mean error 
(within-subject) and (b) 95th percentile errors (within-subject). Quantiles 0.05, 0.25, 0.5, 0.75, 
and 0.95 are shown. 

 



 

 

 

 

Figure 5. Visualization of the first four principal component effects on the head shape. -3.0σ 
(blue) and +3.0σ (white) are compared. 

 

Multivariate regression analysis was performed to associate the given 100 PCs with the 
anthropometric measurements as predictors. Various combinations of anthropometric data 
could be used as predictors depending on application needs. Figure 6 illustrates the outputs of a 



 

 

two-variable regression model using Head Length and Chin Arc Length as predictors for male 
and female head models.  

 

 

Figure 6. Sample outputs from a two-variable regression head shape model showing a range of 
head lengths (160 ~ 240 mm) and chin arc lengths (260 ~ 380 mm) on each female (upper) and 
male (lower) head shape.  



 

 

Using more variables in the regression can be expected to improve head shape prediction. 
Figure 7 shows comparisons between a subject scan and predicted shapes using a full-variable 
regression model and a three-variable model with the parameters of head length, head 
circumference, and chin arc length. Since the neck posture was not standardized, the neck 
segment has the most significant prediction error. The scalp and face were predicted with 
relatively small errors (< 10 mm) even with three variables. Figure 8 shows the cumulative 
(across subjects) mean and 95th percentile mesh error (within-subject) for the full regression 
with 14 predictors, with five predictors, and with three predictors. The median mean errors were 
3.8 mm, 4.1 mm, and 4.8 mm with 11, 5, 3 predictors, respectively, and the median 95th 
percentile errors were 7.4 mm, 8.5 mm, 9.0 mm with 11, 5, 3 predictors. 

 

 

Figure 7. Comparisons between a subject scan (left) and predicted head shapes with a full-
variable regression model (middle) and a three-variable regression model (right). Predicted 
shapes are colorized with a heatmap based on the distance to the scan surface (black lines) at 
each vertex.  



 

 

 

Figure 8. Distribution of mean (left curves) and 95th percentile (right curves) mesh error across 
subject for regressions with full variables (solid lines), 5 variables (dash-dotted lines), and 3 
variables (dashed lines). 

This parametric head shape model allows an easy and intuitive generation of a 3D digital head 
shape along with the 58 landmarks and anthropometric dimensions. For example, ten randomly 
generated head shape are shown in Figure 9.  

 

Figure 9. Randomly generated head models with landmarks (red) within the head shape space 
of the model 

 

 



 

 

DISCUSSION 

Our new parametric head shape model accounts for head shape variance without hair artifacts. 
High-resolution head scans from 180 ethnically diverse female and male adults were used to 
build the model, which is the largest dataset of bald head scans for a single model to our 
knowledge. The availability of a large set of well-defined, standardized landmarks is a unique 
attribute of this model. Consistent landmark data is valuable for obtaining homologous template 
fits and minimizes prediction accuracy degradation in the final model (Xi and Shu 2009, Marin et 
al. 2018). More importantly, the availability of the landmarks in the predictions enables a much 
more extensive range of applications. 

An approach to determining the number of PCs for subsequent modeling is to select an arbitrary 
cutoff in the cumulative variance (Jolliffe, 2002), for example, accounting for 95% of the 
variance in the underlying data. However, choosing the number of PCs to retain by this method 
does not provide a practical indication of the effects on the spatial error in shape reconstruction 
or prediction. To examine this factor, the reconstruction error, quantified as the distance 
between the reconstructed and original mesh, was calculated across all 180 head scans for a 
number of PCs ranging from 10 to 170. We selected 100 PCs yielding a median 95th percentile 
error of 1.2 mm for the model in this study, which means 50% of individuals have a 95th 
percentile mesh error of less than 1.2 mm. This error criterion was judged to be acceptable for 
the internal use within the project team while keeping the efficiency of the model, but the 
number of the PCs and the error criterion can be adjusted based on the needs of a given 
application. For example, the first 70 PCs yielding a median 95th-percentile error of about 2 mm 
can be chosen to meet the allowable error for the head length and breadth from the ANSUR II 
survey. We also note that because the vast majority of the work in the study is measuring the 
heads, digitizing landmarks, and fitting the data, creating a model for a different application that 
uses more or fewer PCs (or different predictors) is trivial. 

The 100 PCs were then associated with the anthropometric variables as head shape 
parameters using multivariate regression analysis for an intuitive head shape manipulation. This 
regression method creates separate equations to predict PC scores. Typical approaches to 
assess regression model performance, such as significance tests on parameter estimates and 
analysis of residuals, are not very useful for this application because the dependent measure for 
each regression is a PC score, rather than an outcome of direct interest. Moreover, testing 
whether particular variables have “significant” effects on the outcome is not important since the 
goal is to make predictions.  

The residuals of interest are the discrepancies between the predicted and measured head 
shapes, rather than the residuals from the regressions. We investigated the effects of the 
number of anthropometric parameters using the same error metric used to evaluate the PC 
effects. Increasing the number of anthropometric predictors reduces the error only slightly 
relative to the distribution across subjects, indicating that (1) the selected dimensions capture a 
large amount of the variance in head size and shape across individuals, and (2) addition 
dimensions tend to affect relatively small areas of the model. The median 95th percentile error 
with the full parameters is reduced only from 9 to 7 mm compared with the three-variable 
regression. 

There could be a measurement variability issue by using the manual caliper anthropometric 
measurements from different sources and different people (inter-observer variability). However, 



 

 

there also are reasons why we incorporate these manual measurements along with the digital 
measurements in the model: 

• Inter-observer variability was carefully controlled to minimize the human errors in the 
measurements by collecting the data by a few well-trained measurers for both the male 
and female datasets. Also, all the measurements were performed following the detailed 
standardized protocols described in the ANSUR II documentation. We believe the inter-
observer variability for these datasets is negligible. 

• The caliper measures of head breadth and length are included because these generally 
differ systematically from measurement that can be made digitally, due to flesh 
deformation.  

• The manual measurement data were used as the input parameters of the model since it 
is more practical for the majority of users. The head circumference, for example, tends to 
be measured a bit larger in general than the actual dimension due to the hair effect. 
However, at the same time, these manually measured dimensions are what the people 
indeed have for the generation of a subject-specific model. Thus, we decided to 
incorporate the most commonly manually measured dimensions into the model to make 
it broadly useful.  

The distribution of mesh nodes has an impact on the assessment of anthropometry prediction 
error for the full head model. For example, the high density of nodes in the eye, nose, and 
mouth areas compared to the back of the scalp means errors in the face region may dominate 
the predictions. Also, we observed that a different vertex distribution in the template (baseline) 
model affects the resulting principal components (PCs) from PCA. In practice, this disparity 
might affect applications that directly use the PCA model, for example, PC-based shape fitting 
(Park et al. 2017) or boundary manikin generation in PC space (Reed and Park, 2017). There 
would be two approaches to resolve the vertex density disparity issue in practice: (1) applying 
statistical weights differently for the face and scalp vertices, and (2) adjusting point density by 
subdividing polygons in the scalp area or decimating polygons in the face area. The first 
approach is easy to implement but requires building another PCA model. The second one does 
not require building a separate PCA, but attention is needed to choose proper statistical 
weights. However, we have not found meaningful differences in decision points in this work (for 
example, choice of the number of PCs to retain) based on reweighting vertex importance based 
on spatial density. 

A limitation of the model is that the model predictions are based on a population of young men 
and women from the United States. The current model is based on an anthropometrically 
diverse population and appears to perform well for a wide range of head types, but more work is 
needed to assess the quality of the predictions for markedly different populations. Some 
national populations are known to have head shapes that differ on average from the rest of the 
world (e.g., Ball et al. 2010). More data is needed to create a model that works well for a 
population with different origins than our source data, such as East Asian. Additional data are 
needed to create useful models of children as well as elderly and obese adults. As a future 
work, we will analyze the ethnicity and age effects and establish the prediction capability via the 
online model, once the analysis has been performed with more data. 

 

 



 

 

CONCLUSION 

We presented a new parametric head shape model that accounts for head shape variance by 
analyzing scalp surface data. High-resolution head scans from a diverse sample of female and 
male adults were used to build the model. The large sample of 3D scans with scalp surface and 
a broad set of standardized landmarks is a unique attribute of this model. This parametric model 
opens opportunities to generate a sample of realistic head shapes with a set of landmarks that 
match a given target anthropometric range to test the product’s accommodation. 

The parametric head model described here is one of several outcomes of a larger project to 
solve problems identified by Zehner et al. (2011). The authors pointed out that: (1) 
measurements from head scans are different from caliper measurements, (2) hair under the cap 
[donned for scanning] makes the head shape questionable, and (3) female head scans are 
nearly unusable due to hair volume.  

A count by one of us (BDC) estimates there are about 50,000 head scans worldwide that have 
been taken since the early 1990s when head scanners became widely available. Nearly all of 
those legacy scans were collected with contactless laser, structured light, or stereo-photo 
systems. Which means, all those scans suffer from not really knowing scalp shape under the 
subject’s hair.  

A follow-on goal for this work is to establish a correspondence between scalp surface and 
known surfaces in a head scan, essentially from the ears forward and from hairline to chin. With 
that correspondence, we can then estimate scalp shape for legacy head scans. Zehner et al. 
(2011) described the shortcomings of head scans for informing helmet design. By predicting the 
scalp surface, scans will have a minimum head surface (face with scalp), a middle surface- face 
with compressed hair under a cap, and a maximum surface head scan with no cap (if the 
scanner was able to capture hair). Alternatively, the three layers may be a face with scalp, head 
with compressed hair under a cap, and a head with a donned helmet. However, the various 
head surfaces are combined; an accurate estimation of the scalp’s surface makes head scans 
far more useful in headgear design and performance analysis.  

Currently, the three-variable parametric head shape model is publicly available online at 
http://humanshape.org/head/. The online model provides the essential functionality of the 
model, such as the rapid generation of a specific head shape model along with the landmark 
and anthropometric dimension estimation. Users can download the resulting head geometry and 
estimated dimension data in widely used formats. We anticipate adding more head scans and 
measurement data in the near future to make the model represent a wider population range.  
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APPENDIX A. Landmark Definitions 

Name Definition Name Definition 

Endocanthion 

  

A bilateral point located at the 
medial corner of the eye where 
the upper and lower eyelids 
meet. 

Subnasale The point where the nasal septum 
merges with the upper cutaneous 
lip in the mid-sagittal plane. 

Exocanthion 

  

A bilateral point located at the 
lateral corner of the eye where 
the upper and lower eyelids 
meet. 

Alar Curvature 

  

The alar curvature point is a 
bilateral landmark located at the 
most posterolateral position along 
the crease 

Infraorbitale 

 

Lowest point on the inferior 
margin of the boney orbit 

Subalare 

  

Subalare is a bilateral landmark 
located below the nostril opening at 
the point where the infero-medial 
continuation of the alar cartilage 
inserts into the skin of the upper 
lip. 

Eye Center, 

  

Estimate center of eye Margin 
of boney orbit at lateral 
position of center of eye 

Nasal width 

  

Points defines the border of nose 
on the crossline through left and 
right infraorbitale. 



 

 

Eyebrow Ridge 

 

Four points evenly distributed 
along the left /right eyebrow 
ridge (supraorbital foramen), 
starting from the most medial 
point. 

Labiale 

Superius. 

  

Stomion 

  

Labiale 

Inferius 

  

Sublabiale 

Labiale superius is located in the 
midline along the vermillion border 
of the upper lip. 

Stomion is located along the labial 
fissure in the midline when the lips 
are closed. 

Labiale inferius is located in the 
midline along the inferior 
vermillion border of the lower lip. 

Sublabiale the most posterior 
midpoint on the labiomental soft 
tissue contour that defines the 
border between the lower lip and 
the chin. 

Pogonion 

(Anterior Chin 
point) 

The most anterior point on the 
contour of chin in the 
midsagittal plane 

Chelion 

  

Chelion is a bilateral landmark 
located at the outermost corner 
(commissure) of the mouth where 
the upper and lower lips meet. 

Glabella 

  

A point located at the middle 
of eyebrows 

Tragion Tragion is the point located at the 
upper margin of each tragus. 

Sellion 

Rhinion 

Supratip 

Pronasale 

Sellion is located at the 
deepest depression of the nasal 
bones at the top of the nose. 

Pronasale is defined as the 
most forward point on the 
nose tip in the midline. 

Rhinion and Supratip are 
located at second quarter and 
third quarter locations between 
the Sellion and Pronasale. 

Preaurale 

Superaurale 

Subaurale 

Postaurale 

  

Preaurale is the most anterior point 
of the ear, located at the level of the 
helix attachment to the head. 

Superaurale is the highest point on 
the free margin of the auricle 

Subaurale is the lowest point on 
the free margin of the ear lobe. 

Postaurale is the most posterior 
point on the free margin of the ear. 

Gnathion Gnathion is a midline point 
located on the inferior surface 
of the chin (mandible). 

    

 



 

 

APPENDIX B. Head Dimension Definitions  

• Head length: The distance from the glabella landmark between the brow ridges to the rearmost point of the 
skull. 
 

• Face width: the distance between exocanthions--the outer corners--of the eye.  
 

• Tragion to Top of the Head (TTOH): The vertical distance between the right tragion landmark and the 
horizontal plane tangent to the top of the head. As measured with an anthropometer. 
 

• Bitragion width: the distance between the left and right tragion.  
 

• Ear height: the distance between the sub-aurale to the super-aurale on each ear.  
 

• Head circumference: the length of the intersection of the head surface and the plane perpendicular to the 
midsagittal plane and going through the glabella and ophistokranion.  
 

• Arc length: the arc over the surface of the head, measured from the glabella to the occiput.  
 

• Arc width: the arc over the surface of the head, measured from the right tragus to the left tragus.  
 

• Bitragion chin arc: the surface distance between the left and right tragion across the anterior point of the 
chin. 
 

• Bitragion submandibular arc: the surface distance between the right and left tragion across the 
submandibular landmark at the juncture of the jaw and the neck. 


